Probability and Statistics I

STAT 3600 - Fall 2021

Le Chen
lzc0090@auburn.edu

Last updated on
July 4, 2021

Auburn University
 Auburn AL

Chapter 3. Continuous Distributions

Chapter 3. Continuous Distributions

§ 3.1 Random Variables of the Continuous Type
§ 3.2 The Exponential, Gamma, and Chi-Square Distributions
§ 3.3 The Normal Distributions
§ 3.4 Additional Models

Definition 3.3-1 A r.v. X follows the normal distribution with parameters $\mu \in \mathbb{R}$ and $\sigma>0$, denoted as $X \sim N\left(\mu, \sigma^{2}\right)$, if its pdf is defined by

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right], \quad-\infty<x<\infty
$$

The moment-generating function of X is

$$
M(t)=\exp \left(\mu t+\frac{\sigma^{2} t^{2}}{2}\right)
$$

Consequently,

$$
\mathbb{E}(X)=M^{\prime}(0)=\mu
$$

$$
\operatorname{Var}(X)=M^{\prime \prime}(0)-\left[M^{\prime}(0)\right]^{2}=\mu^{2}+\sigma^{2}-\mu^{2}=\sigma^{2}
$$

That is, the parameters μ and σ^{2} in the pdf of X are the mean and the variance of X.

Standard normal distribution

If $Z \sim N(0,1)$, we say that Z has a standard normal distribution.
The distribution function of Z is

$$
\Phi(z)=\mathbb{P}(Z \leq z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-w^{2} / 2} d w
$$

Values of $\Phi(z)$ for $z \geq 0$ is given in Table Va in the appendix of the textbook.

Because of the symmetry of the standard normal pdf it is true that

$$
\Phi(-z)=1-\Phi(z), \quad \forall z \in \mathbb{R}
$$

Again, because of symmetry of the standard normal pdf, when $z>0$,

$$
\Phi(-z)=\mathbb{P}(Z \leq-z)=\mathbb{P}(Z>z)
$$

can be read directly from Table Vb.

Example 3.3-1 If $Z \sim N(0,1)$, find
(a) $\mathbb{P}(0.53<Z \leq 2.06)$.
(b) $\mathbb{P}(-0.79 \leq Z<1.52)$.
(c) $\mathbb{P}(Z>-1.77)$.
(d) $\mathbb{P}(Z>2.89)$.

In statistical applications, we are often interested in finding a number \boldsymbol{z}_{α} such that

$$
\mathbb{P}\left(Z \geq Z_{\alpha}\right)=\alpha
$$

where Z is $N(0,1)$ and α is usually less that 0.5 . That is, Z_{α} is the $100(1-\alpha)$ th percentile (sometimes called the upper 100α percent point) for standard normal distribution.

Example 3.3-2 Find the values of (a) $z_{0.01}$; (b) $-z_{0.005}$; (c) $z_{0.0475}$.

Theorem 3.3-1 If $X \sim N\left(\mu, \sigma^{2}\right)$, then $Z=\frac{X-\mu}{\sigma} \sim N(0,1)$.

Theorem 3.3-1 can be used to find probabilities relating to $X \sim N\left(\mu, \sigma^{2}\right)$, as follows:

$$
\mathbb{P}(a \leq X \leq b)=\mathbb{P}\left(\frac{a-\mu}{\sigma} \leq \frac{X-\mu}{\sigma} \leq \frac{b-\mu}{\sigma}\right)=\Phi\left(\frac{b-\mu}{\sigma}\right)-\Phi\left(\frac{a-\mu}{\sigma}\right)
$$

since $(X-\mu) / \sigma$ is $N(0,1)$.

Example 3.3-3 If the moment-generating function of X is
$M(t)=\exp \left(166 t+200 t^{2}\right)$, find (a) The mean of X; (b) The variance of X; (c) $\mathbb{P}(170<X<200) ;$ (d) $\mathbb{P}(148<X<172)$; (e) $\mathbb{P}(|X-166|<40)$.

Theorem 3.3-2 If $X \sim N\left(\mu, \sigma^{2}\right)$, then $V=(X-\mu)^{2} / \sigma^{2}=Z^{2} \sim \chi^{2}(1)$.

Example 3.3-4 If Z is $N(0,1)$, find values of c such that (a) $\mathbb{P}(Z \geq c)=0.025$;
(b) $\mathbb{P}(|Z| \leq c)=0.9$.

Exercises from textbook: Section 3.3: 1, 3, 5cd, 6, 7, 8, 9, 11, 12, 13, 17.

